IPv6 was designed by the IETF IPng (Next Generation) Working Group and promoted by the same experts within the IPv6 Forum since 1999. Expanding the IPv4 protocol suite with larger address space and defining new capabilities restoring end to end connectivity, and end to end services, several IETF working groups have worked on many deployment scenarios with transition models to interact with IPv4 infrastructure and services.

They have also enhanced a combination of features that were not tightly designed or scalable in IPv4, such as IP mobility and ad-hoc services, catering for the extreme scenario where IP becomes a commodity service enabling lowest cost networking deployment of large scale sensor networks, RFID, IP in the car, to any imaginable scenario where networking adds value to commodity. For that reason, IPv6 makes feasible the new conception of extending Internet to consumer devices, physical systems and any imaginable thing, that can be benefited of the connectivity. IPv6 spreads the addressing space in order to support all the emerging Internet-enabled devices.

In addition, IPv6 has been designed to provide secure communications to users and mobility for all devices attached to the user; thereby users can always be connected. This work provides an overview of our experiences addressing the challenges in terms of connectivity, reliability, security and mobility of the Internet of Things through IPv6. This paper describes the key challenges, how they have been solved with IPv6, and finally presents the future works and vision that describe the roadmap of the Internet of Things in order to reach an interoperable, trustable, mobile, distributed, valuable, and powerful enabler for emerging applications such as Smarter Cities, Human Dynamics, Cyber-Physical Systems, Smart Grid, Green Networks, Intelligent Transport Systems, and ubiquitous healthcare.

Download Slide

Category: Resources